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ABSTRACT 

This paper descr ibes  an approach t o  the i d e n t i f i c a t i o n  of l i n e a r  dynamic 

systems wi th  random parameters. 

i s  developed f o r  es t imat ing  the  s t a t i s t i c s  of randomly varying parameters i n  

systems whose d i f f e r e n t i a l  equat ion is  known a p r i o r i .  The r e s u l t i n g  mathematical 

model then app l i e s  t o  a family of s imi l a r  systems r a the r  than t o  an ind iv idua l .  

A technique, based on the  Fokker-Planck equat ion,  

The Fokker-Planck equation i s  appl ied t o  a f i r s t  order  l i n e a r  system wi th  

a random (Gaussian) parameter. 

of the  system output  a r e  generated and used t o  es t imate  the f i r s t  and second moments 

of the  random parameters. The i d e n t i f i c a t i o n  procedure is  based on regress ion  

techniques.  

F i r s t  order  d i f f e r e n t i a l  equat ions f o r  the  moments 

The r e s u l t s  of an  app l i ca t ion  of the  technique t o  a s p e c i f i c  f i r s t  order  

system a r e  presented wi th  a t h e o r e t i c a l  discussion of the  accuracy of the  i d e n t i -  

f i c a t i o n  procedure. 

of the  techniques t o  higher order  l i n e a r  and non-l inear  systems. 

The concluding sec t ion  of the  paper d iscusses  the  extension 
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1. INTRODUCTION 

The identification problem is concerned with the determination of a mathe- 
matical relationship which describes the input-output behavior of an unknown 
system. 
where the form of the mathematical model is assumed to be known 2 priori and 
only parameters values are unknown. 

A large class of identification procedures is concerned with systems 

I 
In such cases, the identification is reduced 

to finding the values of the parameter set which minimize an appropriate function- 
al of the difference in performance of the model and system. 
procedures are relaxation methods, gradient techniques and random search algo- 
rithms [ 1, 2, 31. Techniques of this type have been applied to such diverse 
problems as identification of the response characteristics of a human operator 
in a manual control task or the identification of the parameters of a malfunction- 
ing system for diagnostic purposes. 

Typical of such 

However, it must be noted that the class of identification techniques out- 
lined above is primarily suited to systems with deterministic parameters. 
Uncertainties are normally assumed to be present only in the measurement of 
system outputs. When, as in the case of the human operator modeling problem 
cited above, it is suspected that the system has random1.y varying parameters the 
identification concentrates on the mean values of the parameters and not on their 
distribution. 
involving a large number of repeated experiments. 
to the extension of the present theory to the identification of the statistics of 

random parameters in a single experiment. 

( 

I The randomness is accounted for by resort to Monte Carlo techniques, 
This paper presents an approach 

The function of identification takes on a broader aspect if the end result 
represents a class of systems rather than an individual. Such i s  the case for 
random parameters. 
ing model applies to a family of similar systems. 
systems cannot be defined in terms of deterministic parameters. h case i n  p o i n t  

is the biclogical system (e.g., the human operator) whose pararxters are not 

By identifying the statistics of the parameters, the result- 
Alternately, many i n d i v i d u a l  
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constant  when observed over any given period of time, but can be represented 

t o  a c lose r  degree of r e a l i t y  by means of s t a t i s t i c a l  parameters. 

reported here  is  devoted t o  the  problem of random parameter i d e n t i f i c a t i o n .  

The research 

I n  recent  years  two approaches t o  noise  theory have developed. The f i r s t  

method is heavi ly  dependent on the  concept of s t a t i o n a r i t y  and the  spectrum of 

the random process.  

Rice's [ 4 ]  method. 

d i f fus ion  process method [ 6 ] .  

theory of Brownian motion where the path of a p a r t i c l e  of c o l l o i d a l  s i z e  i n  a 

viscous f l u i d  is  perturbed by molecular c o l l i s i o n s .  

This technique has been employed by Rice and i s  known a s  

The second method is the  method of Fokker-Planck o r  the 

Hi s to r i ca l ly ,  t h i s  l a t te r  method is  based on the 

I n  applying t h i s  l a t te r  technique we seek the  p robab i l i t y  d i s t r i b u t i o n s  

f o r  a random va r i ab le  whose mean has a bandwidth very much smaller  than the 

d i s tu rb ing  and superimposed noise .  So, i f  a process y ( t )  i s  defined as 

y ( t )  = S ( t )  + n ( t ) ,  the  sum of s igna l  and noise ,  then i t  can be shown f o r  any 

- small i n t e r v a l  of t i m e  At,  the f i r s t  moment, y ( t )  = S ( t ) ,  the second moment 

y ( t)  = O(At), and a l l  higher  moments vanish i n  the l i m i t  as the t i m e  increment 

At approaches zero.  Simply t h i s  means t h a t  i n  the t i m e  A t ,  the  no i se  can 

f l u c t u a t e  q u i t e  rap id ly ,  but  y ( t )  changes i n  the mean only a s  S(t), and only 

small per turba t ions  of y ( t ) ,  about y ( t )  can occur i n  small i n t e r v a l s  of t i m e  At. 

The a c t u a l  course which a Brownian p a r t i c l e  w i l l  take depends only on the ins tan-  

taneous va lues  of i t s  physical  parameters and is  e n t i r e l y  independent of i ts whole 

previous h i s t o r y .  Thus, t he  path of a Brownian p a r t i c l e  f a l l s  i n  the  c l a s s i f i c a -  

t i o n  of a Markhoff process,  with independent increments. 

- 
2 

There a r e  many noise  processes which occur i n  na ture ,  such as thermal and 

shot  no i se ,  which when processed through a system, have the macroscopic proper t ies  

of t he  d i f f u s i o n  process .  

and appl ied  i n  general  t o  s t o c h a s t i c  va r i ab le s  which f i t  t h i s  r a t h e r  broad model. 

I n  t h i s  paper the Fokker-Planck equation i s  der ived fo r  a one d i ~ e n s i o n a l  random 

process .  It i s  then appl ied  t o  a system descr ibed by a l i n e a r  d i f f e r e n t i a l  equa- 

t i o n  conta in ing  a random parameter. As a r e s u l t  of-zhis*appl l"cat ion,  f i r s t  order  

d i f f e r e n t i a l  equat ions f o r  the var ious  moments of t he  system output a r e  generated.  

These a r e  then used t o  i d e n t i f y  the f i r s t  and second moments of t he  random parameter. 

Thus, the method of Fokker-Planck can be abs t r ac t ed  



2 .  THEORY 

Let y(t) be a random Markhoff process and W (y /y, t) its second order 2 0  
conditional probability density function, where yo is the value of y at t = 0. 
Then, for an incremental change in time A t  this density function can be 
described as 

Wp (Y,/Y, t + At) = Sm W2 (yo/z, t) W2 (z /Y,  At) dz (1) 
-a 

where z = y - Ay and Ay is the increment in y(t). 
can occur in the time At this density function also satisfies the so-called 
Fokker-Planck differential equation 

If only small changes in y 

where the An(y) are the conditional moments of the variations about the expected 
value of y(t) at any instant t, as defined by 

r" 
(3 )  1 

At - 1 (LAY)" w2 (YIY + ay, At) dY 
-00 

An(y) = lim 
At- 0 

and An(y) = 0 for all n > 2 .  

A brief derivation of the Fokker-Planck equation is given in Appendix A. 

Assume now that the system to be identified is defined by. a first order 
differential equation: 

where x(t) is the driving function, B ( t )  is the random parameter, and y(t) is the 
system output. 
is wide bandwidth Gaussian noise with zero mean and variance u . 

It is assumed that B(t) = b + n(t) where b is a constant and n(t), 
2 

The coefficients of the Fokker-Planck equation A1(y), A2(y) defined in 
equation (3)  are derivable from equation ( 4 ) .  Taking a small increment in time At, 

-4 -  



SO t h a t  y ( t )  can be approximated by AylAt, w e  o b t a i n  the  approximate r e l a t i o n s  

N 
AY = x At - By At 

2 -  2 2  2 
AY = + B Y At - 2By x ( t )  At2 + x2 At2 

Using the  d e f i n i t i o n  of the  moments A1(y) and A (y) from ( 3 ) :  2 

i At 
At J = -by + x A1(y) = l i m  

At+O 

- 
1 

At J 
+ - (x At)  

2 s i n c e  n ( t  ) n ( t  ) = cr 6 ( t 2  - t l ) ,  See Reference 4 .  1 2 

It can a l s o  be shown t h a t  An 0 f o r  a l l  n > 3 .  See Appendix B. 

The corresponding Fokker-Planck equation is  the re fo re ,  from equation (2 )  : 

Where W i s  understood t o  mean W 2  (yo/y, t ) .  

The moments of y can now be defined i n  terms of W :  

E -3 -  



This equation can be differentiated with respect to time to yield 

and the first integral on the right of e.g. (7a) can be written as 

+a3 i, at dun W dy = E (nyn-l lim k }  At = n At-0 lim E {yn-' g}.  

The response in y is of the Brownian motion type and is a Markhoff process 
k with independent increments. Hence E(y Ay) = 0 for any finite k. Thus 

00 

yn = (8) ), Y" dY. 

a 
at 

We can substitute for from the Fokker-Planck equation (6), yielding 

- 
yn = \I yn {(- $ (-by+ x) W) + - u2 ay2 Z L  (y%)} dY 

a0 

j Y" -2 (Y2 W) dY 2 
A (by W - x W) dy + 2 U yn = 

. S m  'a a y  -00 3Y2 

-6- 



Now, by assumption W ( t  00) = 0 and a!! 
d Y  

(2 a) = 0, and 

- 
. . I = nb y"". Reference 5 (9) 

Similarly, 

which reduces to 

Hence, the moments of the system output satisfy the differential equations 

- 2 
2 

- - - 
U n-l + - n(n-1) yn yn = -nb yn + IUC y 

subject to the initial condition yn(0) for all n. 

Therefore, the first two moment equations become 

- 
y + b y  = x 

- - 
y2+ (2b - u 2 ) y2 = 2 x y  

These are the first order differential equations for the first and second moments 
of the system's output. 
mathematical model will be assumed which has the same differential equation as 
the system (equation 4 )  but whose parametric values are unknown. In that case, 
b and u ~ the mean and variance of the random parameter are unknown. The identifi- 

In an actual application of the foregoing theory, a 

2 

m n 4 - : - -  - F  CL,,, . .ornmntnra p ) U L Z I . , , L C L . L D  =:ill be demcnstrated i n  the  discassien' tn f c ? L l & .  
C . U L J . U l L  U L  LlIGC3C 

- 7 -  



3 .  IDENTIFICATION 

Since the model differential equation is assumed to have the same form as 
the system, the differential equations for the moments of the model output 
(derivable from the Fokker-Planck equation) must also have the same form as 
equations (12) and (13). Therefore, let the identification model consist of 
the following differential equations: 

i1 + c1 ml = x 

I 2 + (2c1 - c2) m2 = 2 x  m 1 

10 where m is the estimator of 7, with assumed initial value m 

is the estimator of y2, with assumed initial value m 

1 - 
20 m 

2 

C is the estimator of b 1 

2 and C is the estimator of u 
2 - 

The driving function x will be common to both the system and model equations. 

The procedure consists of first identifying C1 in equation (14) by means of 
a discrete regression technique, and then computing C2 from equation (15). 
Questions of convergence for the regression identification algorithm are discussed 
in Reference 7 .  

For the determination of CI, both the system (Equation 4 )  and model 
(Equation 14) response functions were sampled with a sampling interval AT. This 
was established by the time increment employed for the integration algorithm for 
the differential equations. 

-8- 

The noise component of the parameter B was generated by a digital Gaussian 
random number generator, whose samples are mutually independent. 
effective bandwidth (2W cps) 

However, an 
was superimposed on the noise samples 



by the  sampling i n t e r v a l  

of the sampled s i g n a l  i s  

theory 

2 Since the  t o t a l  no i se  power is  u , t he  t i m e  dura t ion  

T seconds, and the  bandwidth is 2W, then from sampling 

where the  n a r e  the  noise  samples. Thus 2WT 

and the e f f e c t i v e  sampling rate i s  2W = N/T = 

power i s  d i s t r i b u t e d  over the  bandwidth of 2W 
2 i n  t h i s  region is  u /2W.* Since 2W i s  

k = N where N is  the  number of samples, 
1 AT samplea/second. The total noise  

cpe.  Hence, the  s p e c t r a l  dens i ty  

~ 

1 2 * The es t imator  f o r  & w i l l  be denoted by C i n  the  rest of t he  paper, t o  
22 d i s t i n g u i s h  i t  from C ( t h e  es t imator  of u alone). 2 

-9 -  



much l a r g e r  than b/2n, t h i s  noise  looks l i k e  white noise* t o  the  system w i t h  a 
c o r r e l a t i o n  funct ion.  

2 - a  R(T) =I 2~ 6 ( 7 ) .  See Reference 8. 

The i d e n t i f i c a t i o n  was based on the following c r i t e r i o n  function: 

i=l i= 1 

where Ti and m 

response and the f i r s t  moment model equation response, equation (14) .  

a r e  the corresponding samples of the  system's s l i d i n g  average li 

* The white noise  cha rac t e r  of the mul t ip l i ca t ive  noise ,  as experienced by the 

system can be described i n  the  following h e u r i s t i c  way: 

The d i f f e r e n t i a l  equation of the system can be w r i t t e n  i n  the following form: 

y + ( b + n ) y = x  

where n i s  the  wide band a d d i t i v e  noise.  

the  r i g h t  hand s i d e  of t h i s  equation 

Now transposing the product ny t o  

9 + by = x - n y  

I f  f o r  t he  moment x i s  considered zero, ny i s  the  d r i v i n g  funct ion t o  a f i r s t  

o rde r  l i n e a r  d i f f e r e n t i a l  equation. 

i n  frequency of the bandwidth of n ,  and the  bandwidth of y .  

The bandwidth of y i s  r e s t r i c t e d  to  b/2n. 

l a r g e r  than the  bandwidth of n .  I n  passing through t h e  f i r s t  o rde r  d i f f e r e n t i a l  

equat ion,  the  bandwidth of ny is reduced t o  the  bandwidth of y again.  Thus, i f  

t he  bandwidth of n > > b / 2 n  the  bandwidth of ny >>b/2rr and ny is e f f e c t i v e l y  

white  noise  t o  the system. 

The bandwidth of ny is the convolution 

The bandwidth of ny is  thus s l i g h t l y  

- 10- 



The change of cp with  respec t  t o  C1, is given by 

N N 
= 2 23 ei (2) 

i=l i=l i 

s ince  only t h e  model equat ion is sens l t i ve  t o  changes in  C1. 

s t a t i o n a r y  po in t  f o r  Cp, with  r e spec t  to  C1, an increment AC 1 
reduce 

In  order  t o  f ind  

must be found to  

t o  zero.  L e t  the  incremented va lue  C = Clo + LC and the correspond- 11 1 a c1 
ing model output be approximated a s  

hl - - "10 4- Acl Zq 

where C and m are the i n i t i a l  value of C and ml r e spec t ive ly .  Now s u b s t i t u t i n g  

these expressions i n t o  (18) ,  and equating it zero,  the  parameter i n c r e m e n t a  can 

be found: 

10 10 1 

and 

AC1- - 

Due t o  t h e  f i r s t  order  approximations employed, t h i s  process  does not  lead to  

a minimum cp i n  a s i n g l e  t r i a l  and must be repeated seve ra l  times, so t h a t  a f t e r  

the  j - t h  i t e r a t i o n  

The p a r t i a l  d e r i v a t i v e  of ml with r e spec t  t o  C1 is a s e n s i t i v i t y  c o e f f i c i e n t  

o r  i n f luence  c o e f f i c i e n t  (9)  derived i n  the  following manner. 

equat ion  (14) wi th  respec t  t o  C1 

D i f f e r e n t i a t e  



and let the  s e n s i t i v i t y  funct ion XI be defined by 

Then, assuming t h a t  m 

t i o n  can be interchanged and 

i s  continuous i n  both C1 and tl the order  of d i f f e r e n t i a -  l 

This equat ion was programmed wi th  the system equat ion (4) and regress ion  equat ions 

(17), (19) i n  order  t o  compute t h e  increments &('), 

cons is ted  of the  following steps: 

The computation procedure 

1. 

2 .  

3 .  

4 .  

5. 

6 .  

2 For a given p a i r  of va lues  of b and u 
a r e  der ived from the  system equation. 

of t h i s  da ta  is computed, i .e. ,  y ,  u . 
Y 

For an est imated value of C1, the  f i r s t  moment ml i s  generated by means of the  

f i r s t  model equat ion,  equat ion (14). 

a set of k system response samples 

I n  a d d i t i o n .  the  mean and var iance 
- 2  

Simultaneously, the s e n s i t i v i t y  f ac to r  X1 i s  generated by means of equat ion (20). 

The increment AGl (j) i s  then computed so a s  t o  reduce the c r i t e r i o n  func t ion ,  

equat ion  (19). 

This process i s  repeated u n t i l  the  c r i t e r i o n  funct ion i s  minimized. 

The second moment C 

knowing, C 

input  

is then computed from equat ion (15), i n  s teady s ta te  

I n  s teady  s t a t e ,  f o r  a s t e p  func t ion  
2 

', and 2W, as follows: 1' *y 

2 A ml 
N 

m =  
2 2c1 (1 - c;/2c1) 

and 

-12- 



'2 A/C1, where x ( t )  = A ml 

Fur the r ,  C /2C1 >> 1, so t h a t  t h e  expression f o r  m can be w r i t t e n  a s  2 2 

r y -  However, when cp i s  minimum m 
m2 y . Hence 

= y ,  and the  condi t ion requ,red t o  y i e l d  C; is 1 - 2  

y i e  Id ing 
2 

1 c2 _ a y = -  c2 = 2c1 - 2  2w 
Y 

o r  

where C2 es t imates  the noise  var iance  o f  the parameter B, i . e .  u 2 . 

Ord ina r i ly ,  x ( t )  need not  be a step but can be a s t a t i o n a r y  random process .  

t h i s  case  i t  can be shown (10) t h a t  the equivalent  d r iv ing  func t ion  is x ( t ) ,  the  

mean va lue  of the sample func t ion  of the ensemble e x c i t i n g  the  model. x ( t )  i s  a 
s t e p  func t ion  and the preceding ana lys i s  app l i e s .  

I n  - - 

-13- 



4. EXPERIMENTAL RESULTS AND ERROR ANALYSIS 

4 . 1  ESTIMATION OF TIE =AN 

The e r r o r  i n  iden t i fy ing  b, the average value of the unknown parameter, 

c o n s i s t s  of a p rec i s ion  e r r o r  t h a t  is due to  the  experiment and a b i a s  e r r o r ,  due 

t o  the  no i se .  The l a t t e r  i s  due t o  the s t a t i s t i c a l  f l u c t u a t i o n  of the  d i s t u r b i n g  

no i se ,  r e s u l t i n g  i n  a non-zero mean fo r  a f i n i t e  sample space. 

Af t e r  the  t r a n s i e n t  has become neg l ig ib l e  the  c r i t e r i o n  funct ion employed 

f o r  the regress ion  can be approximated i n  the s teady s t a t e  by 

where the  term under the  summation s ign  i s  independent of the  index j and 

A is the  magnitude of the s t e p  input  

C1 i s  the  est imated value of b 

B = b + n  
2 and n is  the add i t ive  Gaussian noise  with zero mean and var iance u and k noise  

samples were employed, 
L__ 

For an i n f i n i t e  sample space E(R) 0, but  A - 
b + K '  ( A / B )  can be considered a8 

f o r  a f i n i t e  sample populat idl  i? has some non-zero va lue .  

b i s  the  a lgeb ra i c  sum of the  a c t u a l  parameter value and the sample mean of the 

n o i s e ,  

L e t  b '  = b + 

Hence, -;he e f f e c t i v e  

For any one run, a l l  the  terms under the summation are cons tan t ;  hence, 

-14- 



where e; = b '  - C1 

k = t o t a l  number of e r r o r  samples 

- 
= measured value of the c r i t e r i o n  funct ion %s 

- 
The value of el = C1 - b = -el' -C n can be found from equation (23) where - 

y = A/b' .  

Thus 

Experimental r e s u l t s  Of c /b  a r e  p lo t ted  i n  Figure 1, as a funct ion of p 2 , the  
1 

a c t u a l  n o i s e  var iance.  For small values of k, the  prec is ion  e r r o r  

i s  predominant. 

k = 89 p o i n t s ,  s ince  E 
increases  the e r r o r  terms are reduced, as i s  apparent from Figure 1. 

coupling term is  small r e l a t i v e  t o  the other terms and can be neglected.  

va r i ance  of the e r r o r  between the ac tua l  and estimated values of the f i r s t  moment 

can be found from equation (24) .  

the  va r i ance  of e 

This can be observed from the negative s lope of the curves f o r  

w i l l  increase with increasing noise .  However, as k 
ss  

The cross-  

The 

Since these e r r o r s  can be considered independent, 

is  expressed by: 1 



I .  
8 .  

where 

2 
1 and u - ~  = the var iance of E and u = the variance of y. 

9 Y 

2 2 
Var e = - k 1 k 

From equat ion (27) i t  is  seen t h a t  t h  s v a r i a t i o n  becomes smal, as k increases .  

The l a r g e s t  experimental confidence i n t e r v a l  f o r  C1 thus . .  occurred f o r  
2 

d = 20, b = 50 and k = 89. This represents  an extreme case f o r  the observed 

da ta .  ’ 

Where = 49.33 

u = .00352 Y 

est imated (a- 2 /E) = .5 
2 

= .05 . $S 

- 
Y = 1.0116 

The Var el  2 . 2 9 4 , i t s  standard deviat ion i s 5 4 3  and the 95 percent confidence 

Thus the number of required obser- i n t e r v a l  f o r  Cl/b i s  therefore  (Cl/b 

v a t i o n s  l i e s  between 89 and 489. 
2 .022). 

- 16- 



4.2 ESTIMATION OF TI@ PARAMETER VARIANCE 

2 The estimation error for u can be determined with the aid of equation (21), 
which can be rewritten as 

2 2c u 
AT -2 Y 
= 1 Y  

c2 

1 
2w ' where AT is the sampling interval, AT = - 

From the differential calculus the experimental fluctuation of C2 can be expressed 
in terms of the fluctuations of C1, u and y2 to a first order of approximation: 

Y '  

Then 

- 
e 2 = a c 2 -  

The increments in ay' and & will be in error due to statistical fluctuation, 
Y 9 

L with equal likelihood of either sign. Furthermore, the errors due to Au and - Y 
& are due to the same source. This is also true for ACl, as k gets large. 
Thus, a conservative estimate of the error C2 is made by assuming the three 
contributing errors to be dependent. Where 

Thus 
2 

1 
2 Auy = \I 2 oy 

-1 7- 



I .  

' 2  Proof t That - 
k 

2 - 2  a n -  
Y 

2 Var a = Var 
Y 

2 
Var (yi - - Y) = E (yj  - 5)4 = 3 [E(yj - 3 ' 1  * 3uy 4, by the 

gaussian assumption. 

U Q.E.D. 2 Var a = - 
Y k Y  

Now 
2 2 a - c2 2 - 0  - - - I  

c2 c2 c2 

e 
- =  

. .  Since the bracketed term i s  small compared to  1 .  

Equation (32) g ives  the expression for C2/c maxj the estimated variance 
9 

normalized with the maximum uL. 



Figure 2 i l l u s t r a t e s  some of the  experimental r e s u l t s  f o r  C The improvement 2 "  
with an increased number of sample poin ts  i s  again apparent .  For l a r g e  k, 

- 2 
- Y I y l -  c2 n a  - 

20 20 c1 

1' Thus, the  e r r o r  i n  C v a r i e s  d i r e c t l y  as n and inverse ly  a s  C 
2 

The var iance of the estimated e r r o r  fo r  a2  can be found from equat ion (31). 

20 
Var e = Var 2 

Y W  Y 

2 

+ 0 + 2 Y l )  -2 2 (33)  Var (e2/o = (3 + - 4 2  
2 (K+ 2OJ2 

Y k  4k -2 Y TSS Y k  

For the extreme case used t o  i l l u s t r a t e  the confidence i n t e r v a l  f o r  e l ,  w e  f i nd  

the standard devia t ion  from equat ion 30, for  e2/20 t o  be .04. 

confidence l i m i t s  f o r  e /20 a r e  (e  /20 +, .08) f o r  a2  = 20, and the number of observa- 

t i o n s  should be s l i g h t l y  g rea t e r  than 489. 

Hence the  95 percent  

2 2 

. Conclusion 

By means of a model der ived from the Fokker-Planck d i f f e r e n t i a l  equat ion,  i t  

was poss ib l e  t o  set up a computation algorithm f o r  the  i d e n t i f i c a t i o n  of the  second 

order  s t a t i s t i c s  of a random parameter. 

However, the  method i s  app l i cab le  i n  p r inc ip l e  t o  any order  l i n e a r  system containing a 

f i n i t e  number of f i n i t e  parameters. 

c e r t a i n  classes of nonl inear  systems by using approximation techniques t o  represent  

p r o b a b i l i t y  d e n s i t y  and c o r r e l a t i o n  funct ions.  

t h i s  hypothesis .  

Th i s  was done f o r  a f i r s t  order  l i n e a r  system. 

It may a l s o  be poss ib l e  t o  extend the method t o  

More work w i l l  be required t o  examine 

Although the  i d e n t i f i c a t i o n  technique employed here in  was by means of regress ion ,  

t h i s  is a r b i t r a r y .  

provided only  t h a t  the model moment equations e x i s t  and a r e  known. 

The method can be employed with any i d e n t i f i c a t i o n  procedure, 

Once t h e  f i r s t  moment o r  the  average parameter value has been e s t ab l i shed ,  the 

method can be  used t o  es t imate  any required number of the moments of the  system's 

ou tput ,  assuming only t h a t  the  input  process i s  s t a t i o n a r y .  

-19- 
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APPENDIX A 

The development of t he  FokkerhPlanck follows e s s e n t i a l l y  the  development of 
I 

Reference 5. 

One Dimensional Case 

The bas i c  s t a r t i n g  poin t  i s  the Smolukowski equation. See Reference 5. Let 

y ( t )  be a random Markhoff process,  and W ( y  / y ,  t )  i ts  second order  condi t iona l  

dens i ty  funct ion.  Where yo i s  the  value of y a t  t i m e  0. 

change i n  t i m e  t h i s  dens i ty  funct ion can be described a s  

2 0  
Then f o r  an incremental 

W2 (Y,/Y, t + At) = W2(y0/z, t )  w2(z/y, At)  dz (A- 1) 
-co 

Cons i d e r  

where Q(y) and a l l  i t s  de r iva t ives  Q(n)(y) e x i s t ,  and vanish as y e +  OD s u f f i c i e n t l y  

r ap id ly  f o r  the  convergence of a l l  i n t eg ra l s  i n  the  following de r iva t ion ,  but  i s  

otherwise a n  a r b i t r a r y  funct ion of y. 

equat ion (A-1) and s u b s t i t u t e  i n  equation (A-2) .  

Replace aW2/dt by i t s  l i m i t  form, use 

All i n t e g r a l s  i n  t h i s  development a r e  to  be considered a s  S t i e l j i s  i n t e g r a l s .  

Interchanging the order  of i n t eg ra t ion  and expanding Q(y) i n  a Taylor series about 

t he  po in t  z then gives  f o r  the double in t eg ra l  i n  equation (A-3). 

-23- 



For n = 0, t h i s  term cancels  

I = C  
t h e  second term i n  equation ( A - 3 )  and 

Po0 

( A - 3 )  

where by d e f i n i t i o n  

(A-4)  

The c o e f f i c i e n t s  A (z) are the l i m i t s  of the s p a t i a l  moments of the  increments n 
i n  z ,  occurr ing during the i n t e r v a l  A t ,  given the present  value z ( t ) ,  ( i .e .  the value 

of y( t -At)) .  

the  s l i d i n g  average of z(t)*,  a t  any in s t an t  t .  

I n  o the r  words the  An(z) are  condi t iona l  moments of the v a r i a t i o n s  about 

It is assumed t h a t  a l l  the coe f f i c i en t s  An(z) e x i s t  and a r e  a t  most f i n i t e  so 

t h a t  the s e r i e s  of equation (A-3) coverages. 

p a r t s ,  and w e  employ the  assumption t h a t  Q(n)(z)-O, a s  z++_ co s u f f i c i e n t l y  

r ap id ly  such t h a t  

I f  equat ion (A-3) i s  now in tegra ted  by 

l o o  
Q(n) An(z) W2 = 0, fo r  a l l  n, we f ind  t h a t  i n  changing the 

v a r i a b l e  of in t eg ra t ion  from z t o  y t h a t  

* The e l i d i n g  average is  defined as the  expectat ion of z ( t ) ,  which f o r  the non- 

s t a t i o n a r y  case ,  can be a funct ion of t i m e .  
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Since Q(y) is otherwise an a r b i t r a r y  function 
a0 

where W2(yo/y, 0 )  = Sty - yo). 
Smolukowski equat ion.  

This is the series expression for the  

When the f i rs t  and second moments A (y) a r e  non-zero and f i n i t e  and a l l  higher  n 
mcnnents go t o  zero a s  At-0, t h i s  equation reduces t o  the Fokker-Planck p a r t i a l  

d i f f e r e n t i a l  equation, i .e . ,  i f  only small changes i n  y can occur i n  small  changes 

of time. 

' . I with the  i n i t i a l  condition 

the  boundary 

W '  (+ ao) 2 -  

condi t ions 

0 0 )  = 0 
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APPENDIX B 

The purpose of t h i s  appendix is  t o  prove t h a t  

I A = 0 f o r  a l l  n * 3,  i n  equation (3)  
n 

1 
An At-0 At 

- - - l i m  

L e t  A yn = - r. . $‘ F ( t l )  F ( t 2 ) .  . . F( tn )  d t l  d t 2  . . ’. d t n  

Since the incremental s t a t i s t i c s  are  cond i t iona l  on the present  value of y, 
I 

I F ( t )  i s  condi t iona l ly  a l i n e a r  function of n ( t ) .  Thus, F ( t )  i s  a Gaussian random 

v a r i a b l e  , and the re fo re  

f o r  n a 3 and odd, Ayn = 0. 
- 

For n 5 4 and even, F ( t l )  F( t2)  . . . F ( t  ) i s  equal t o  the sum of n 

n! terms each of which i s  a product of nf2 p a i r s .  Reference 4 .  
I (2)n’2 ! 

An = A t  l i m  -0 ) nf21 
*n At-0 ($) ! ,nf 2 P X ’  At2 (At + 1 02y2 At)n’2] = 0 Q . E . D .  = l i m  n! 
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